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Abstract A graph G is said to be an f -graph if G has no vertex of degree greaterthan f . Define F (n, f ) to be the graph with vertices the set of unlabeled f -forestsof order n with vertex v adjacent to vertex u if and only if v and u differ by exactlyone edge. Note that if v is adjacent to u, then either v is a one-edge deleted sub
f -forest of u or v is a one-edge extended super f -forest of u. A number of papersinvestigating these graphs have recently appeared. Here a set is compiled of openproblems concerning various parameters for these graphs. Specifically, problemsassociated with order, size, traceability, planarity, diameter, domination, andapplications in chemistry are presented.
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1 Introduction

A graph G is said to be an f -graph if G has no vertex of degree greater than f . Define
F(n, f ) to be the graph with vertices the set of unlabeled f -forests of order n with vertex
v adjacent to vertex u if and only if v and u differ by exactly one edge. Note that if v
is adjacent to u, then either v is a one-edge deleted sub f -forest of u or v is a one-edge
extended super f -forest of u. A number of papers investigating these graphs have recently
appeared and are noted in the references. These investigations have given rise to a number
of open problems concerning various parameters for these graphs. In particular, problems
associated with order, size, traceability, planarity, diameter, domination, and applications
in chemistry are presented.

2 Order

There are algorithms for computing the order of F(n, f ), (see [3, 9]). Thus it is of interest
to find improvements of these algorithms. It is also of interest to find other interpretations
of the sequence of the orders of F(n, f ) for different values of f . For example, the order of
F(n,2) is precisely the number of unrestricted partitions of n [9] whose initial values are
listed as the sequence A000041 in [14].

Problem 2.1 Are there other interpretations of the sequence of orders of F(n, f ) for f ≥ 2?

Problem 2.2 Is it possible to find and/or reasonable to ask about generating function
formulations for the order of F(n, f )?

3 Size

As with the order of F(n, f ) there are algorithms for computing the size of F(n, f ) [9].
Similarly, as for order:

Problem 3.1 Are there other interpretations of the sequence of the sizes of F(n, f ) for
f ≥ 2?

Problem 3.2 Is it possible to find and/or reasonable to ask about generating function
formulations for the size of F(n, f )?

The ratio of the size to the order of F(n, f ) is defined to be the edge density of F(n, f ),
see [6].

Problem 3.3 Determine whether for all n≥ 5 the edge density of F(n, f ) is unimodal with
respect to increasing f with maximum value at some f < n−1.
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Problem 3.4 For a given n determine the value of f at which the edge density is maximum.

For a connected graph G, the relation |E(G)| − |V (G)|+ 1 equals the number of
independent cycles in G. This is known as the Betti number of G, denoted β(G). Thus,
the results on order and size of F(n, f ) yield the Betti number of F(n, f ), which in turn
provides information about other properties of F(n, f ).

Problem 3.5 Investigate various cycle properties of F(n, f ). For example, determine the
circumference of F(n, f ) (see Section 4).

4 Traceability

Since F(n, f ) for n ≥ 4 always has a pendant vertex and at most two pendant vertices, the
latter occurring if and only if f = 1 or n− 1 (see Theorem 2.4 [10]), F(n, f ) never has a
Hamilton cycle, that is, a cycle that contains every vertex. However, F(n, f ) may contain a
path that contains every vertex, namely, a Hamilton path. Such a graph is called traceable.
The traceability properties of F(n, f ) have been studied in [10, 12].

Problem 4.1 Prove the conjecture [10] that F(n, f ) is non-traceable for n ≥ 10 and 3 ≤
f ≤ n−1.

Let F∗(n, f ) denote F(n, f ) with its pendant vertices deleted.

Problem 4.2 Does F∗(n, f ) contain a Hamilton cycle?

Note that if F∗(n, f ) contains a Hamilton cycle, then in the cases where F(n, f ) had a
single pendant vertex, F(n, f ) will be traceable.

5 Planarity

The question of the planarity of F(n, f ) is completely solved via the following theorem.

Theorem 5.1 (Theorem 2.1 in [6])

(a) F(n, f ) is nonplanar for all n, f such that n≥ 6 and 3≤ f ≤ n−1.

(b) F(n, f ) is planar for all n, f such that 1≤ n≤ 5 and 0≤ f ≤ n−1.

(c) F(n,2) is nonplanar for all n≥ 7 and planar for all 3≤ n≤ 6.

(d) F(n, f ) is planar for f = 0, n≥ 1 and f = 1, n≥ 2.
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Problem 5.1 For the nonplanar cases, what is the genus of F(n, f )?

Theorem 5.1 yields all F(n, f ) with genus γ(F(n, f )) at least 1. There are some basic
theorems that provide results concerning the lower bound for the genus γ(G) of a graph G.
An example is the following.

Theorem 5.2 (Theorem 15.4.1, p. 526 in [11]) If G is connected, then

γ(G)≥
⌈
|E(G)|(girth(G)−2)

2girth(G)
−|V (G)|+1

⌉
.

Since F(n, f ) is bipartite and has girth 4 for all n ≥ 4 and 2 ≤ f ≤ n− 1, the next
corollary follows directly.

Corollary 5.2.1 If n≥ 4 and 2≤ f ≤ n−1, then

γ(F(n, f ))≥
⌈
|E(F(n, f ))|

4
− |V (F(n, f ))|

2
+1

⌉
.

Applying the result |E(F(8,2))| = 47 and |V (F(8,2))| = 22 (see [3]) it follows that
γ(F(8,2))≥ 2. Similar results follow from the known sizes of various F(n, f ) (see [3]).

6 Diameter

The distance d(G,H) between two vertices G and H in F(n, f ) is defined as the least
number of insertions and deletions in G to obtain H. This is equivalent to the standard
definition of graph distance in F(n, f ). A basic result for the insertion/deletion definition
for the distance between G and H is

d(G,H) = |E(G)|+ |E(H)|−2|E(I)|,

where I is the largest size common subgraph of G and H. This played a central role in the
determination of the next theorem.

Theorem 6.1 (Theorems 2.5 and 3.1 in [13])

(a) diam F(n,0) = 0, diam F(n,1) = bn/2c, diam F(n,2) = diam F(n,3) = n−1.

(b) If 4≤ f ≤ n−3 with fixed f and n→ ∞, then

2 f −3
f +1

n(1+o(1))≤ diam F(n, f )≤ 2n(1+o(1)).

(c) diam F(n,n−2) = 2n−7 for n≥ 6, and diam F(n,n−1) = 2n−6 for n≥ 5.

Problem 6.1 What is diam F(n, f ) for 4≤ f ≤ n−3?

Of particular interest, is the case f = 4, because of its relation to chemistry (see Section
8 and [4, 7, 8]).
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7 Domination

In [3] algorithms for computing the domination number of F(n, f ) are presented together
with the investigation of various domination properties of F(n, f ).

Problem 7.1 Obtain asymptotic properties of the domination number of F(n, f ).

Consider degav(F(n, f )) = 2 |E(F(n, f ))|/|V (F(n, f ))|, the average (mean) vertex
degree of F(n, f ), and ∆(F(n, f )), the maximum degree of a vertex in F(n, f ). Note that
degav(F(n, f )) is twice the edge density (see Section 3), and that ∆(F(n, f )) plays a role in
domination studies [3].

Problem 7.2 Is there a meaningful relation between degav(F(n, f )) or ∆(F(n, f )) and
the domination number of F(n, f )?

8 Applications in Chemistry

A relation of F(n,4) to an application in chemistry was investigated in [4, 5, 7, 8].

First note that the 4-trees of order n are in a one-to-one correspondence with the
saturated hydrocarbons with n carbons, also called alkanes, that is, the molecules with
structural formula CnH2n+2. This is so because the carbon skeleton of these molecules has
the same structure as a 4-tree of order n. For a detailed and historical overview of this
correspondence see pp. 2–4 in [1]. Next note that a vertex of F(n,4), being a forest of
4-trees whose orders add up to n, can be conveniently interpreted as a mixture of alkanes.
The graph F(n,4) can be thought of as having its vertex set all possible alkane mixtures
with representative an n-carbon alkane mixture. Adjacency is interpreted as the breaking
or creating of chemical bonds. A tie in with current research in chemistry concerns the
conversion of methane to higher alkanes. This is explored in [4, 5] using F(n,4) as a
model.

Problem 8.1 Find other chemistry results in converting methane to higher alkanes. Use
these results to extend the F(n,4) model for both descriptive and extrapolation purposes.

Problem 8.2 Find the value of n that is optimum for describing physical results via the
F(n,4) model as was done in [4, 5]. Note that small n may be too coarse and that large n
beyond some specified value may provide only negligible additional insight.
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9 Concluding remarks

Graphs whose vertices are graphs (in general) with bounded degree have a rich history of
research and open problems [2]. Here the focus is on graphs that are forests with bounded
degree and it has been shown that with just this restriction many open problems exist.
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